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Abstract-In a previous paper, the author has shown that the behaviour of imperfect elastic
structures subjected to buckling forces could be predicted on the basis of the eigenvalues and
eigenmodes. After a brief recall of these properties, it is first shown-in Appendix-that they
extend to cases of spatial buckling like the buckling of flexure and torsion. Then, it is shown that
the correspondence principle valid in first-order behaviour of linearly viscoelastic structures
can be extended in full generality-by the use of Laplace transformation-to buckling problems,
whatever be the constitutive equations of the material.

Finally, several examples of eulerian buckling or flexural-torsional buckling of a bar and of
buckling of a plate, are treated in detail.

I. INTRODUCTlON

In 1940, the author has devoted a long paper [1] to the study of the stability of elastic
structures and, in particular, to the behaviour of structures presenting slight imperfections
with regard to the ideal shape for which they would buckle by bifurcation of the equilibrium.
His main results have been reproduced in his book [2].

The aim of this paper is: first, to deduce the results obtained previously, starting directly
from the general finite displacement theory, and to show that they are applicable to cases
of spatial instability like flexural torsional buckling; secondly, to present an extension of
these results to imperfect linearly viscoelastic structures, with some practical applications
to the instability of bars subjected to eulerian buckling or to flexural-torsional buckling
and of plates loaded in their plane.

2. EIGENVALUES, EIGENMODES AND THEIR PROPERTlES
FOR E LASTlC STRUCTURES

We follow the analysis of Washizu [3] and use the finite displacement elasticity referred
to the original axes (Lagrangian coordinates). The coordinates are represented by greek
suffixes: xx, x fJ , x Y

• In its primary stage, the structure is subjected to body forces k]5(o)). in
Vand surface tractions kf<°l). on ST, and uA = 0 on Su == S - ST, where k is a monotonically
increasing factor of proportionality, called the multiplier. We employ as criterion of in
stability the existence, for the value k cr of the multiplier, of an adjacent equilibrium con
figuration.

Calling (J)'~ the additional stresses caused by the infinitely small virtual displacement field
added to the field of the primary stresses k(oj}.~, we obtain by the energy criterion of stability
(deduced from the principle of virtual work) that the condition of indifferent equilibrium is

bIT = 0 and b2 IT = 0 = minimum or b(b 2 IT) = 0 (2.1)

where IT is the potential energy of the structure.
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With the notation
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(2.2)

the expression (2.1) may be written explicitely, [3J

Ilf «(f),lI-fJe),p. + ka(O»)'p. o),ul< op.fJul<)dV = 0
v

with the boundary conditions
a),l<n + ka(O)l<p.n 0 u), = 0 on S

I< I< Ii T

U), = 0 on SUo

(2.3)

(2.4)

(2.5)

In (2.3), use has been made of the summation convention for the repeated subscripts A, /1.
The additional stresses and strains produced by the additional displacements conducing

to the secondary shape are assumed to be connected by relations of the form

aAp. = a),p.«{Je«/J

satisfying the symmetry relation a),p.«/J = a«/J),p.. There exists therefore a strain energy

A(e . O'(O»),P) = la),P«{Je e
),p' ~),p «fJ

(2.6)

(2.7)

and the principle (2.3) may be written

fJ 2IT = If{ {A(u),; a(O»),p.) + tkO'(O»),,, o),ul< o"ul<} dV = 0 = minimum. (2.8)

Putting

and

- ~ III O'(O»),p o),ul< OpUI< dV = fJ 2T,
v

we may write (2.8) as follows:

where

(2.9)

(2.10)

(2.11)

(2.12)

and fJ2 U are the variations, during buckling, of the potential energy of the external forces
and of the strain energy, respectively.

lJ 2Tis, like lJ 2 U, a quadratic and homogeneous functional of the additional displacements.
Equation (2.1) may therefore be written

Iff A(u),) dV
v lJ2U(~) .. (2 13)k cr = - = 2 ), =mInimUm, .

~ IIIO'(O»),,, o),ul< Opu" dV fJ T(u)

which is the celebrated Rayleigh's principle adapted to buckling problems.
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We shall admit that, for the structures we consider, the variational problem (2.13)
possesses effectively a solution. Then, it can be shown [2] that the structure enters in in
different equilibrium for a series of values of k, called instability eigenvalues,

k 1 , k 2 , ... , k n ..

and that it then takes configurations ut(x«), u~(x«), associated to these loads, that we
shall call instability eigenmodes.

To give a concrete and familiar example of foregoing considerations, we consider a
prismatic simply supported bar subjected to an axial thrust P. In that case, the Rayleigh
quotient becomes (Fig. 1).

y

Fig. 1. Buckling of an ideally straight bar axially compressed.

E1 fl "2 d
cFU(u) 2' 0 u X

Pcr = b-2-T-(-) = "":1----:1---

u 2t U,2 dx

the instability eigenvalues (critical loads) are

n2 n2EI
Pn =-1-2-

and the eigenmodes (buckling shapes) are

nnx
Un = An sin -1-

(2.14)

(2.15)

(2.16)

To simplify the notations, b2 U, b2 V and b2 T will, in what follows, be replaced by U, V
and T respectively. It is convenient to normalize the eigenmodes, that means to choose them
so as to have

(2.17)
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and therefore by (2.13)

U(un) = kn ·

In the particular case of the compressed bar, this is obtained by choosing

2,./1 . nnx
Un = --SIn-.

nn I

(2.18)

(2.19)

(2.21 )
1 I

TIl =2foufujdx=O.

An important property of the eigenmodes is that they are orthogonal with respect to the two
functionals U and T. That means that, for any two different modes U j , u

j
, we have

Ull (Ui'U)=O and Tll (u;,u)=O (iic-j) (2.20)

where U11 and Tll are the two bilinear functionals associated to U and T, respectively.
For example, in the particular case of Fig. I, we have

1 IIU ll (U j 'U)=2 oElu;'ujdx=O and

As a result of this property, any displacement field of the structure satisfying the geometrical
boundary conditions of the problem may be expanded in a series of normalized instability
modes as follows

(2.22)

It is easy to verify then that U(u.l) and T(u.l) take the form

00

U(u.l) = L kn a;
n=1

(2.23)

00

T(u.l) = L a~
»=1

(2.24)

If we call principal coordinates of a displacement field the numbers an defined by (2.22), we
have the theorem:
If the considered structure possesses an infinity ofinstability modes forming a complete system,
then the variation, during buckling, of the strain energy, U, and ofthe energy ofexternalforces,
T, may be expressed as sums of the squares of the principal coordinates.

3. BEHAVIOUR OF IMPERFECT ELASTIC STRUCTURES
SUBJECTED TO INSTABILITY

Actual structures never possess the ideal shape that we have implicitely assumed in Section
2. For example, in the simple case of the axially compressed bar, the bar axis is never rigor
ously straight and the line of action of the thrust does never coincide rigorously with this
axis.

In what follows, we call, in order to simplify, structure the actual imperfect structure and
model the perfect reference structure. Our aim is to show that the behaviour of the structure
may be deduced simply from the behaviour of the model.

In the developments which follow, we do not consider only these displacements, but also
other quantities like the rotations of cross sections, the curvature of the axis, the bending
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moment in a certain section, etc. which vary in proportion to these displacements u. To sim
plify the language, we designate all these quantities by the general term "effects", and we
represent them by the notation F.

The characteristic of the (imperfect) structure is to present, in its unloaded shape, small
initial displacements Uo with respect to the perfect model. These initial displacements may
always be represented by an expansion in series of instability modes of the form

(3.1 )

Let us now apply to this structure a set of forces kPi , capable to cause its instability. If the
additional displacements produced by these forces are called u, they may equally well be
represented by a similar series

(3.2)

An effect Fo, whatsoever, which is produced in the structure, may be represented by a similar
development

(3.3)

where the F. are called principal effects.
According to (2.20) and (3.2), the variation of the strain energy of the structure when the
buckling forces kPi are applied, is

U(u) =L k.a;
•

(3.4)

because the structure has a so small imperfection Uo that its strain energy, expressed in the
additional displacements, is the same as that of the adjacent perfect model.

On the other hand, the variation of the potential energy of the structure when the external
forces kFi are applied, may be evaluated by giving to this imperfect structure the displace
ments ( - uo) in order to let it coincide with the perfect model, then by giving to this model
the deformation (uo + u). In view of the relation

and of

we find

V= -kT

00

T(u) = La;,
.=1

(2.12)

(2.22)

(3.5)

The structure being in equilibrium, we may apply the principle of virtual work, according
to which

(3.6)
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Adopting for virtual deformation the instability mode Un of index n, we have:

a(u + V)
b(U + V) = a = 2(knan - kan + ka~) = 0

an

which yields

ka~ aOa = __ ="...-_n_
n kn - k kn/k - 1

(n = 1, 2, ....). (3.7)

The additional deformation of the structure is by (3.2)

1
u - " anoun- ~ (kn/k) - 1

(3.8)

and the total deformation of the structure measured from the perfect configuration of the
model is therefore

" 1 °U t = Uo + u = ~ 1 _ k/k
n

an un . (3.9)

If, instead of the displacement" u" an "effect" F whatsoever produced in the structure is
considered, fully similar results

(3.10)

and

(3.11)

are obtained.
All the results above may be cast into the following theorem:
Theorem 1. The effect of buckling forces is to increase every principal coordinate a~ des

cribing the initial deformation of the imperfect structure in the ratio

kn/k - 1 '

where k represents the intensity of the buckling forces and kn their critical intensity producing
the buckling of the model in its nth mode. All the" principal effects" Fno produced in the
structure are increased in the same proportion.

Similar considerations [1, 2], may be developed for perfect structures which are loaded by
" ordinary" forces, that means forces like Q (Fig. 2) which cannot produce the instability
of the structure, and the two following theorems may be established:

Theorem 2. An elastic structure liable to buckling has the same behaviour whether its
initial deformation before application of the buckling forces kPi be a natural deformation
or a deformation produced by "ordinary" forces.
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kP ,...- --'l~Q ~ kP

-~ J1-
Fig. 2. Bar subjected to "ordinary" forces.
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Theorem 3. (Generalized principle of superposition): If, in an elastic structure subjected
to external forces, the buckling forces kFi remain constant, the deformation resulting from
various groups of ordinary forces may be obtained by superposing the deformations produced
separately by each of these groups acting together with the buckling forces.

Important remark

In the course of this paragraph, the displacement of a point of the structure has been
treated as a scalar quantity, u, whereas it is clear from paragraph 2 that it must be a vectorial
quantity uA in the cases of spatial instabilities. We shall show in Appendix that the properties
of the eigenmodes and eigenvalues recalled in Section 2 and those of the additional displace
ments u of imperfect structures established in Section 3 are still valid in the case of flexural
torsional buckling.

II-LINEARLY VISCOELASTIC STRUCTURES

4. CONSTITUTIVE EQUATIONS AND CORRESPONDENCE PRINCIPLE

Clear accounts of the theory of linearly viscoelastic materials are available [4-9]. In the
most general anisotropic case, the stresses and strains in these materials are related by means
of the Boltzmann superposition integral

ft kl aSkl
(Jij = CuCt - r) --;- dr,

o ur

where the symmetry of the stress and strain tensors implies the relations

C~( t) = C~:( t) = C~~( t).

In applications, it is often desirable to use the inverse of constitutive equation (4.1):

(4.1)

(4.2)

(4.3)

C7J(t) and S7J(t) are components of fourth order tensors and are called relaxation modulus
and creep compliance, respectively.

Introducing the Laplace transforms of above quantities

J = J(s) = {'e-s'f(t) dt = L If(t) I
o

(4.4)
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(4.5)

and transforming equations (4.2) and (4.3) by means of the rule for convolution integrals

j(s)g(s) = L U;f(t - t)9(T)d-r}

yields the algebraic relations

- ?<kl - 46au = ~ijekl ( • )

elj = S}J ifkb (4.7)

where C~J and S~J are defined as s - multiplied transforms (also called Carson transforms)
of the relaxation moduli and creep compliances:

C~J == sC~J, ~fJ == s IltJ. (4.8)

The classical equations of the theory of elasticity read:

Oja lj + F i =0

cij =,-Holuj + Oju;)

with the boundary conditions

and

aiju j = Ti on ST

whereas Hooke's law is, in the general anisotropic case,

aij = CfJckl •

Taking the Laplace transforms of equations (4.9-4.12), we obtain

Ojifij + F i = 0

elj = -HojuJ + OjU;)

iii = Ui on Su

and

(4.9)

(4.10)

(4.11 )

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

If we add to these equations formulae (4.6) and (4.7) which replace (4.13), we see that:
Correspondence principle. The basic equations of linearly viscoelastic materials are formally
equivalent to those ofan" associated" elastic problem for the same geometric body subjected
to imposed displacement Vi = VI(x j , s), surface tractions 11 = TI(x j , s) and body forces
F i = FI(x i , s).

The equations (4.10) and (4.15) are only valid for very small displacements, so that the
validity of the correspondence principle is so far restricted to first order problems. It is the
main aim of present paper to extend it for second-order theory problems such as buckling
problems.

It is easily shown that the correspondeJ)ce principles extends to all variational methods
of elastic analysis. For our present purpose, it will suffice to show this for the principle of
potential energy. In elastic analysis, this principle reads
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where

is the strain energy density.
For the associated linearly viscoelastic body, the principle reads

where

-u l~kl - -
= 2 L i] elj ekl

is the" associated strain energy density".
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(4.18)

(4.19)

(4.20)

(4.20 bis)

5. CONSTITUTIVE EQUATIONS FOR ISOTROPIC VISCOELASTIC MATERIALS

In the isotropic case, the general Hooke's law (4.13) reduces to

(5.1)

where eij is the Kronecker delta.
The Lame coefficients A and p are related to the engineering constants E, v, by the

familiar relations

vE
A=-----

(1 + v)(1 - 2v)

E
P = G = 2(1 + v) . (5.2)

In view of the preceding developments, the law replacing (5.1) for an isotropic viscoelastic
material reads

(5.3)

where X and f1 are the s-multiplied Laplace transforms (also called Carson transforms)
of A and p.

The stress tensor may be decomposed in a spherical tensor s == (akk/3)bij and a deviator
S ij as follows

(5.4)

Similarly, the strain tensor may be decomposed in a spherical tensor e =(ekk /3)bij and a devi
ator eij as follows

(5.5)

Replacing aij and elj by their values (5.4) and (5.5) in Hooke's law (5.1) gives the relation

(Jkk ekk
- <5 .. + s.. = (3A + 2/1) - b .. + 2/1e··3 IJ IJ " 3 IJ "'J . (5.6)
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As

where
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1 + v
3,1, + 2J1 =2 G-- 3K,

1 -2v

2G(l + v) [ E]
K = 3(1 - 2v) = 3(1 - 2v)

(5.7)

(5.8)

is the bulk modulus, equation (5.6) may be decomposed into

(5.9)

In the literature, it is generally accepted that viscoelastic materials respond elastically to
dilatations, but respond viscoelastically to distorsions. This means that the bulk modulus
keeps its elastic value in creep deformations, whereas the Coulomb's modulus G must be
replaced by it Carson transform G.

Now, we can express the engineering constants E and v in terms of K and G as follows

9KG
E=--

3K+G

13K - 2G
v=----

23K+G

We find therefore that the Carson transforms of E and v are

E= 9KG
3K+G

and

_ 1 3K - 2G
v ="2 3K + G

respectively.
Finally, in the theory of plates, the flexural rigidity is given by the relation

Et 3 2Gt3

D= =---
12(1 - v2

) 12(1 - v)

(5.10)

(5.11 )

(5.12)

(5.13)

(5.14)

where t is the plate's thickness. Replacing G by Gand v by its stransform vgiven by (5.13),
we find that

J) _ ~ 2G _ ~ 2G(6K + 2G)
- 12 1 - v- 12 3K + 4G

(5.15)
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We shall establish in the next paragraph the expression of the Carson transform of G

(5.16)

and give the values of R valid for the various mechanical models used in order to represent
the distorsional behaviour of the viscoelastic material.

Replacing G by its value (5.19) in formula (5.15), then dividing numerator and de
nominator by 4G, gives

_(6K _)
_ t 3 2GR(6K + 2GR) Gt 3 R 2G + R
D=- _ =--~--

12 3K + 4GR 12 3K R
4G +

Now, due to (5.8), we have

3K 1 + v
-=--=p
2G 1 - 2v

so that the expression of 15 takes its final form

15 = 2Gt
3

R(2p +!).
12 p + 2R

Therefore, in view of (5.14), we have

15 R(2p + R)
- = (I - v) R'
D p +2

6. THE CLASSICAL VISCOELASTIC MODELS

(5.17)

(5.18)

(5.19)

(5.20)

It is generally accepted in the literature that the behaviour of the main viscoelastic
materials employed in structural applications is represented with a sufficient approximation
by the mechanical model obtained by coupling in series a Maxwell model with a Kelvin
model. This so-called Boltzmann or Maxwell-Kelvin model is represented by Fig. 3. This

Fig. 3. The Boltzmann (or Maxwell-Kelvin) model.

model being consistently used in subsequent applications, it is useful to establish syste
matically its relaxation modulus E(t) and its corresponding Carson transform E. The
calculations are made systematically in following table:

IJSS VallO Na7 - E
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Constitutive equation Laplace transform

172 de2 = a"
dt

-,
_ (J --f/

B2 = -; Sr,2 B2 = a
E2

a' + a" = a

dB 2
E2G2 + 172 - = a

dt

dG3
'11-=a

dt

(j' + (j" = (j

(
1 I I )

(j-+ +- =3
E1 E2 + Sr,2 Sr,I

According to (5.7), (jle = £(s). Thus,

_ 1 1 1
S(s) =-+ +-

E1 E2 + sr,z Sr,I

which can be transformed into

1 E1(s+E
2
)s

£(s) = -;- = 112
S(s) 2 (E 1 E1 E2 ) E1E2

S --j- -+-+- S+--
111 112 112 171112

More generally, it is easily seen that, for the generalized Kelvin model of Fig. 4,
the viscoelastic operator is given by the relation

1 n - 1

S=- L ---+-
Eo 1 Er +llr S I1n S

whereas, for the generalized Maxwell model of Fig. 5,

n S

£= L --.
r=1 S I

-+
Er I1r

(6.1)

(6.2)

(6.3)

(6.4)

o E

En-l

.~
11n-l

Fig. 4. Generalized Kelvin model.



Buckling behaviour of imperfect elastic and linearly viscoelastic structures

a

En

"lin

o

Fig. 5. Generalized Maxwell model.
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Alternatively, equation (6.2) can be specialized to correspond to the usual degenerate cases:

_ (s + e2 /y/ 2)S
Newton-Kelvin model: E(s) = ( / /) E /

(e
1

= (0) I '"It + I Y/2 S + 2 Y/IY/2

Standard linear solid: (_( ) s + E2 /Y/2

( )
E s = E1 --,...---,--:=::----=----::-:-

Y/l = 00 S + (l/Y/2)(E1 + E2 )

_ (I I)S(s) = - +---
E1 E2 + SY/2

(6.5)

(6.6)

(6.6 bis)

Kelvin model:
(E1 = Y/l = (0)

Maxwell model
(E2 = Y/2 = (0)

Viscous model
(E1 = E2 = /12 = (0)

{

_ s
E(s) = E1 /

s + E1 Y/l

S(s) = (~ + _I)
E1 Y/l S

(6.7)

(6.8)

(6.8 bis)

(6.9)

The above expressions are valid for plane structures composed of bars, whose behaviour
is uniquely governed by the Carson transform of Young's modulus E. In the case of space
structures or plates and shells, above viscoelastic models represent the behaviour in shear
and E(s) should be replaced in all formulae by G(s) and E1 by G.

For example, in the particular case of a viscoelastic material which behaves in shear as
a Maxwell material, we shall have

In general, we shall write

G=GR,

(6.10)

(6.11 )

where R is the rational fraction appearing behind E1 in formulae (6.6), (6.8) and similar.
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7. SOME SIMPLE EXAMPLES OF APPLICATIONS OF THE
CLASSICAL CORRESPONDENCE PRINCIPLE

7.1 Relaxation of a Maxwell material

The constitutive equation is

(7.1)

with
s

£(s) = E1 /
s + E1 '11

A strain e~(t), where ~(t) is the unit step function, is suddenly applied at time t = O. Find
the relaxation law, that is the decrease of (J with time. We replace in (7.1) £ by sE, where
E is given by (6.8). We find

whose transform is
(7.2)

7.2 Creep of a Maxwell material

We apply a sudden stress (J = (Jo ~(t) at t = 0 (Fig. 6) and ask for the law (J = (J(t). We
write (7.1) in the form

°0

Fig. 6. Suddenly applied stress.

- 1 1 bS is given by - + -; thus, (7.3) ecomes
E1 111 S

_ 1 s + E1/1'1l _
e=- 2 (J.

E1 S

The Laplace transform is

(J (Jt
e = -~(t) +-

E1 1'11

7.3 Creep of the standard linear solid

From (7.3) with S given by (6.6 bis), we obtain

(1 1)_
e= E

1
+ E

2
+ S1'12 (J.
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This may be written

•~ .0(L +d'CH ~,I",) + ,E~I~J
Applying the inverse Laplace transform, we find

B= 0'0 E2 [.!!2. (1 _ e-(E2/~2)r) + YJ2 e-(E2/~2)r]
YJ2 E2 E1 + E2

which may be simplified into

B= [0'0 E~~:2 - 0'0lE2e-(E2/~2)r] A(t).
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8. EXTENDED CORRESPONDENCE PRINCIPLE FOR IMPERFECT
VISCOELASTIC STRUCTURES SUBJECT TO BUCKLING

The second variation of the strain energy, U, of an elastic structure depends linearly
on the two elasticity moduluses, E and G. In view of formulae (2.12) (or (2.13)), the eigen
values k n (or P~r) also depend linearly on E and G. The same applies to the second variation
of the strain energy, given by formula (2.21). Therefore, we obtain the Extended correspon
dence principle for structures subject to buckling:

All the mathematical developments of Section 3 are validfor linearly viscoelastic structures,
at the sole condition to replace all quantities f by their Laplace transformsJand the elasticity
moduluses E and G by their s-multiplied transforms (also called Carson transforms) E and G.

We recall hereafter the main formulae of Section 3 and give their Laplace transforms. To
establish the correspondence, we give the new formulae (8.8) and (8.10) the same numbers
as in Section 3.

00 1
F= L k Ik -1 F~un

n n

(3.1)

(3.8)

(3.3)

(3.10)

(8.8)

(8.10)
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9. SOME SIMPLE EXAMPLES OF THE EXTENDED CORRESPONDENCE
PRINCIPLE TO AXIALLY LOADED BARS

(9.1)

9.1 Simply supported bar, made ofa Maxwell material possessing an imperfection affine to

the first buckling mode

The bar is represented by Fig. 7.

1 x t
~-~~1 t l

y(u) "

Fig. 7. Imperfect simply supported bar, axially compressed.

The initial deformation is

.f • nx
Uo = lO SID-

I

and is affine to the first buckling mode

. nx
Ul = SIlli'

In this case, k == P and equation (3.8) reduces to

P
f= PI _pfo .

The Laplace transform (8.8) of this equation reduces to

- P l'
f= ----lo·

PI -P

As the initial imperfectionfo is supposed to be applied suddenly to the bar at the time t = 0,
fo = fo il(t). Thus, its Laplace transform 10 is fo/s. On the other hand, PI = PI (£/E1),

with

Replacing into equation (9.1), we obtain

1= (9.2)

Introduction of the non dimensional ratio
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and of the notation

E A
-=-
E1 B

(9.3)

yields

J=_ex:_~.
A s
--ex:
B

(9.4)

According to Section 6,

E A s
-=-=
E1 B s + E1/Yf1

Introducing this value into (9.4) gives

(6.8)

J=
ex: fo

s s
---ex:

E1s+-
''It

which can be written

1- fo s ex: E 1 ff=-- +---JO----
1 - ex: s(s __ex:_ E1) 1 - ex: Yf1 s __ex:_ E1

l-ex:Yfl l-ex:Yfl

According to the tables of Laplace transforms, the inverse transform of

1 1
is __ (eat _ ebt) (9.5)

(s - a)(s - b) a-b

s 1
is __ (aeat _ bebt). (9.6)

(s - a)(s - b) a-b

Transforming backwards expression (9.5) gives, after simplifications

{
lex: E1 }f(t) = fo -1 + -- exp -- - t .

I - ex: I - ex: Yf1
(9.7)

9.2 Same problem, but for a Maxwell-Kelvin material

Instead of calculating f( t), it is easier to calculate the percentage increase with time of
the transverse displacement, i.e. the ratio

R = f(t) + fo
f(O) + fo

(9.8)

where f(O) is the amplitude of the additional deflection taken by the compressed bar at
time 0 +, immediately after the initial imperfection fo has been applied.
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Now, it is known by formula (3.9) reduced to its first term that

Umax =/(0) +10 = ~.
I-ex

Therefore, the ratio R to be determined reads

R = I(t) +10.
10

I-a

Its Laplace transform is

(9.9)

(9.10)

J+.&._ s
R=-

10
1 - ex

because, once again, the initial deflection is supposed to be applied as a step function of
intensity 10 .

The developments of Section 9.1 are still valid up to formula (9.4), inclusive but £/E1

is now given by formula (6.2). Introducing expression (9.4) into (9.10) yields

ex A
--- + 1 BO - a)

R=A/B-a.!j= = A(I-a)

s-(o-~s-a s s(~ _ a) seA - aB)

Formula (6.2) is equivalent to

A(s) = (s + ~:)s

(
E1 E1 E2 ) E1E 2B(s) = S2 + - + - + - s + -- .
~1 ~2 ~2 ~1~2

With these values of A and B, (9.II) becomes

(s + ~:)
R=---=-"'-----..,;~:_:_---__=__::_

S2 +S [E 2 _ ~(~+ ~)] __a_ E_1E_2
YJ2 1 - a ~1 YJ2 1 - ex ~IYJ2

Introducing the simplifying notation

f3 = aE[ (~+~),
1 - ex YJl YJ 2

we find that the roots of the denominator

(9.11)

(9.12)
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are nl' n2' such that:

E [( E )2 4a E E ] 1/2
2n 1 2 = f3 - .2. ± f3 - .2. +--~

, '11 '12 1 - rx '11'12

We may therefore write

Since, by (9.13)

formula (9.14) may still be written

- s + f3 - (n 1 + n2) 1 (f3 - n2 f3 - n 1)

R = (s - n1)(s - n2) = n1 - n2 s - n1 - s - n2 •

It is well known that the inverse transform of R is

This result coincides with the analysis given by Kempner in [10].
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(9.13)

(9.14)

(9.15)

(9.15 bis)

9.3 The most general solution for an axially compressed bar, made of any linearly visco
elastic material, having an arbitrary initial deformation Uo = uo(x) and having arbitrary
conditions of support at its ends

To have a concrete problem in view, let us assume for example that the bar is simply
supported at its left and built-in at its right end (Fig. 8.) The viscoelastic material composing
the bar is represented by a model composed of any combination of springs and dash-pots.
By the considerations of Section 6, it is possible to derive the rational fraction of the
variable s

E A
-==-
£1 B

representing the Laplace transform of the stress relaxation modulus. Considering the nth
buckling mode Un = f" u.(x), and the corresponding nth eigenvalue kn = P~~), we define the
non-dimensional ratio

Fig. 8. Imperfect bar axially compressed, general case.
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The percentage increase with time of the total transverse displacement corresponding to the
nth mode !net) is

R (t) = fn(t) + f,? = fn(t) + fno.
n fn(o+) + j~O fno

1 - lI.

Formula (9.11) is easily generalized for the nth mode into

(9.16)

(9.17)
R = A(l - lI.n)

n seA - lI.nB)

and we can find by its inverse Laplace transform the function Rit). Rn(t) being known for
all n, we have, by (9.16)

!net) = fnO Rn(t) -fno.
I -lI.n

The additional deformation in the nth mode is therefore

(9.18)

(9.19)

By the extended correspondence principle applied to the generalized principle of super
position (Sections 3 and 8), the variation with time of the additional deflection u' is given
by adding the contributions of the various modes, which gives finally

(9.20)

For example, in the concrete case of the built-in simply supported bar of Fig. 8, the eigen
values are given by the formula

(n) _ knEI
Pcr - J2

where the Jk" are the successive roots of the transcendental equation

/-k
o

- _ tg / i:-
"'\;1 n- '\,/ n"

(9.21)

(9.22)

The first root of this equation is 4.493 and the higher order roots are given accurately
enough by the formula

/- 2n+l
Ik =--n

y n 2

On the other hand, the buckling modes are given by the general formula

. xJkn x. Jkn
un(x) = sm -/- - 7sm -/-.

(9.23)

(9.24)

10. EXAMPLE OF THE USE OF THE EXTENDED CORRESPONDENCE
PRINCIPLE FOR A CASE OF FLEXURAL TORSIONAL BUCKLING

For the basic theory and the notations, we refer to the Appendix. To simplify foregoing
calculations, we restrict ourselves to the problem of flexural torsional buckling of a bar
whose cross section is symmetrical with respect to Gz (Fig. 9). Then, Ys = 0 and the differen
tial equations of the perfect bar (equations (15) of Appendix) reduce to
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G Y

E s

z

Fig. 9. Monosymmetrical cross-section.
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(10.1)

(10.2)

(

EIZV"" +Pv" -PzsljJ" =0
E1 w"" + Pw" = 0
EI~"" - GJljJ" + Pi;ljJ" - PZsv" = O.

It is visible that they decouple into an Eulerian buckling in the Gz plane, governed by
second equation (10.1) and a flexural torsional buckling in the Gy plane, governed by the
system of equations

{
EIz v'''' + Pv" - PzsljJ" = 0
ElljJ"" - (GJ - Pi;)ljJ" - PZsv" = O.

In what follows, we assume that the bar is simply supported and that warping is free at
both ends, which gives the following boundary conditions

v = v" = 0, ljJ = ljJ" = 0 for x = 0 and x = I.

In that case, it is well known (see e.g. 121, p. 226) that the buckling modes are

. nnx . nnx
Vn = Anb SIll -1-' ljJn = Bn SIll -1-·

(10.3)

(1004)

In these expressions, b is whatever dimension of the cross section, introduced in order to
render coefficients An' Bn, nondimensional. To simplify further calculations, we introduce
the notations

(10.5)

(10.6)

(10.7)

which represent the nth buckling loads for eulerian buckling in the Gy plane and pure
torsional buckling, respectively. Introducing now expression (1004) into the differential
equations (10.2) and using notations (l0.5), we find

{
P;Anb - PAnb + pzsBn = 0
Pz,Anb + i;(P~ - P)Bn = O.

These algebraic equations are linear and homogeneous in An, Bn. Buckling (An, Bn =I !)
only occurs if these equations are compatible, which requires that

I(P; - P)b PZs 1- 0
pzsb i;(P~ - P) - .



776 Ch. MASSONNET

(l0.9)

(10.8)

From (10.7), we find the classical expression of the flexural torsional buckling load of order n

p(n) = P~ + P; + J(P~ - p;)2 + 4P~P;(Z;/i;)

cr 2(1 - z;Ii;)
We can normalize the buckling modes by expressing the normalizing condition (20) (see
Appendix). This reduces here to

1

f (V'2 - 2z Vi ,I,' + i 2",'2) dx = 1 for all n.n s n'f'n ptrn

°
Replacing Vn and i/Jn by their expressions (10.4), one finds

2 2
n 17: 2 2 ·2 2
y(Anb - 2zs bAnBn + lpBn) = 1 for all n.

This condition added to one of the comiitions (10.6), for example the first one:

(p~ - P~r)bAn + P~r Zs Bn = 0,

(10.10)

(10.11)

determines completely the values of An and Bn for all n and therefore the amplitudes of the
buckling modes.

We consider now an elastic bar possessing some initial imperfections vo(x), i/Jo(x), In line
with the results of the Appendix, we call uo(x) a scalar quantity representing symbolically
these initial imperfections. If these imperfections can be expanded into series of the buckling
modes of the form

~ ~

vo(x) = L a~vn(x), i/Jo(x) = I anOi/Jn(X)'
n~l n~l

then we can take for example uo == Vo and represent the imperfect shape byt

CD

uo = I a~Un(X)'
n=1

(10.12)

(10.13)

(10.14)

According to Section 3-which has been shown in the Appendix to be applicable to cases
of spatial buckling-the additional deformation of the imperfect bar when the compression
force is applied is

CD 1
u(x) = I a~Un(X)'

n= 1 Pn/P - 1

In particular, if the initial imperfection is affine to the first buckling modet (10.13)

t The first buckling mode is given by (lOA) as

7TX 7TX
v,(x) = A,b sin I' .p,(x) = B, sin /'

If we put Alb = fand B,jA, b = K, these expressions may be written

7TX 7TX
v,(x) = fsin /' .p,(x)=Klsin /. (10.15)

where K is completely determined by (10.10) and (10.11). The assumption made means exactly that the
initial imperfection is given by:

7TX 7TX
vo(x) = fo sin /' .po(x) = Klo sin / (10.16)
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reduces to

and the amplitude of the additional deflection is
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(10.17)

(10.18)

We suppose now that the imperfect bar studied hereabove is made of the linearly visco
elastic material studied in Sections 5 and 6. Because of the extended correspondence principle
developed in Section 8, the behaviour with time of this bar is governed by the Laplace
transform of (10.18)

(10.19)

withJo = lo/s, which has the same form (9.1) as in Section 9. However, here, the behaviour
of the bar with time will entirely depend on the censtitutive equations of the viscoelastic
material.

First case. If the viscoelastic material shows constant Poisson's ratio v under viscoelastic
deformation-as it is approximately the case for aged concrete-the viscoelastic moduluses
E and G remain proportional to each other because

G = E
2(1 + v)

In this case, equations (10.8) and (10.5) written for n = I show that

(10.20)

(10.21)

(as in Section 9), where PI is the critical load of flexural torsional buckling of the corre
sponding elastic bar (given by (10.8) for n = 1). The mathematical developments are therefore
identical to those obtained in Sections 9.1 and 9.2 for Eulerian buckling and the final
results (9.7) and (9.15) are valid here.t

Second case. On the contrary, if the viscoelastic material responds elastically to dilatation,
but viscoelastically to distorsions, as discussed in Section 5, then we must, in order to obtain
the Laplace transform of (10.19), take account of the fact that, by (10.5), P~ is proportional
to E and P;, involves both E and G, and that the first flexural torsional buckling load PI
(given by (10.18) for n = 1) is a complicated combination of P;, and P~. Following par. 5, we
must therefore replace everywhere G by Gf{ and E by :

E _ 9KG _ 9KGR
- 3K + G- 3K + Gf{' (10.22)

t This result can be shown to apply to other cases of spatial instability, as for instance lateral buckling.
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(10.23)

We then find that PdP! is a complicated function of R that we call F(R). Transforming
(10.19) as in Section 9.1. and putting IX = PIP!, we come to a relation of the form

J= _IX ·Ii.
F(R) - IX S

There are no difficulties other than algebraic ones to find the inverse Laplace transform
of (10.23):

1=l(t), (10.24)

which describes the additional deformation of the compressed bar in the course of time.

11. EXAMPLE OF THE USE OF THE EXTENDED CORRESPONDENCE
PRINCIPLE FOR CASES OF BUCKLING OF PLATES

Consider the following problem: a rectangular plate (Fig. 10) made of a linearly visco
elastic material, is simply supported on its four edges. It is uniformly compressed in the
horizontal direction. Find its behaviour along the time. It is supposed that the initial
deflection Wo of the plate

o . mrrx . nrry
wo(x, y) = Imn sm --;;- sm b

is affine to the (m, n) buckling mode

(11.1 )

. mrrx . nrry
wmn(x, y) = Ism~ sm b' (11.2)

o x

ax b

a

y

Fig. 10. Simply supported rectangular plate, axially compressed.

The buckling critical stresses (eigenvalues) are given by the formula

(11.3)

where

is a reference stress called Euler stress,

k = (bm + !!!!..-)2 = (~ + nrx)2
- a bm IX m

is the (non-dimensional) buckling coefficient and

(1104)

(11. 5)
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a
a=-

b

is the aspect ratio of the plate.
The Laplace transform of (10.3) is
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(11.6)

(11.7)

and, taking account of formulae (11.4) and (5.19), the Laplace transform of (JE becomes

_ n2 15 n2 2Gt3 R(2p + R)
(JE = b2t = b2t 12 p + 2R . (11.8)

It follows from Section 8-and especially formula (8.2)-that the Laplace transform of
the additional deflexion f is:

- f::./s
f==---=--

Km.IK - 1

where Km• == if';,.· and K = (J = ~x . Taking account of (11.7) and (11.8), we obtain

(11.9)

(11.10)

f~.
s

1m. = 1 n2 2Gt3 R(2 + R) .
-k -- -1
N x m. b2 12 p + 2R

A formula similar to (11.10) was obtained by Lin [13] by a rather different reasoning and
for the particular case of a viscoelastic material which behaves under deviatoric stresses as
a Maxwell material. In that case, by Section 6,

_ s . £1
R = -- With f3 = -.

s+f3 '11

Lin gives in his paper the corresponding value of f~~ obtained by applying the inverse
Laplace transform to (11.10), as well as a complete numerical example. The interest of the
present derivation is to show that the result (11.10) is completely general in the sense that
it applies to any loading case like compression, shear, bending, or combinations of these
loadings.

As soon as the function fm.(t) is found, the deflection of a plate possessing the initial
deflection

'\' '\' 0 . mnx . nny
wo(x, y) = L. L. fm. sm -- sm -.

m • a b

is obtained. Indeed, by the extended superposition principle,

. mnx . nny
w(x, y, t) = I I fm.(t) sm - Sill -.

m • a b

(11.11)

(11.12)

This result can still be generalized for plates of any shape and any boundary conditions by
replacing the double sine series by a series in terms of the buckling modes of the considered
plate.
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APPENDIX

(1)

Generalization of the properties of imperfect elastic structures to a case ofspatial instability:
Flexural-torsional buckling ofan axially compressed bar

1. Variational formulation of the problem for the perfect bar. As was mentioned by
Washizu, [3], p. 313, it is possible to formulate the variational problem of the flexural
torsional buckling of an axially compressed bar which is clamped at one end (x = 0) and is
subjected to an axial force Pw at the other end (x = 1) by introducing the approximate
displacement field:

U(x, y, z) = u - YVG - zWG + If/ep(y, z)

V(x, y, z) = V G - y(l - cos 1jJ) - z sin IjJ

W(x, y, z) = W G + Y sin IjJ - z(l - cos 1jJ),

where U, V, W, are the components of the displacement of an arbitrary point (y, z) of the
bar, u(x), vG(x) and wG(x), functions of x only, are the components of the displacement of
a point G of its axis. t/J is the angle of torsion and ep(y, z) is Saint-Venant's warping function.
The y and z axes are taken to coincide with the principal axes through the centroId of the
cross section.

According to Trefftz [II, 12], the coordinates of the shear center of the cross-section
(which is also the center of twist), are

Ys = - ~ If zep dy dz, Zs = ~ II yep dy dz (2)
I y ~

with

I y = Ifz2 dydzandlz = Ify2 dydz;

and the torsional rigidity is C = GJ with

J = If G; z - ~: y + y2 + Z2) dy dz.

Saint-Venant's warping function is chosen so that

If ep dy dz = 0.

(3)

(4)

(5)

Trefftz has also shown that, if eps(y, z) is the Saint-Venant warping function with the shear
axis as the axis of rotation and is so chosen that

we have

where

If ep,(Ys z) dy dz = 0,

ep,(y, z) = ep(y, z) - ZsY + ysz

r, = r - y; I y- z.; I z

r = If ep2(y, z) dy dz and r s = ff ep;(y, z) dy dz

(6)

(7)

(8)

(9)

are the warping rigidities of the cross-section corresponding to the points G (centroId) and
S (shear center) respectively. For practical calculations, it is more convenient to take as
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(14)

(15)

variables the displacements v, W of the shear center S. As is well known, the relations between

VG' WG and v, w, are as follows:
v=vG+zst/J, w=wG-yst/J·

Either by above method or by the technical theory of thin-walled bars with open cross
section, [2], its is possible to show that

1 t

U ="2 fa (Ely W"2 + ElzV"2 + GJt/J'2 + Ert/J"2) dx (10)

V = - ~ it {(V,2 + W,2) + i; t/J'2 + 2ys w't/J' - 2zsv't/J'} dx (11)
2 0

with the notations

i; = y; + z; + lplA, lp = If (y2 + Z2) dy dz, A = Ifdy, dz. (12)

II = U + V is the variation of total potential energy during buckling and, if the bar is in
indifferent equilibrium, we must have (see e.g. [2]) for the true buckling displacements
v, w, t/J:

II = (U + V) = 0 = minimum. (13)

The extreme condition (13) on II requires that the variations of this quantity with respect
to the three independent displacements be equal to zero:

Dv(II) = 0, Dw(II) = 0, D",(II) = O.

This yields the following system of differential equations:

(

Elz v"" + Pv" - PZst/J" = 0
Ely w"" + Pw" + PYst/J" = 0
Ert/J"" - GJt/J" + Pi;t/J" - PZsv" + pYs w" = O.

It can be shown (see [2]) that this system has non trivial solutions (vr, Wr, t/Jr) called buckling
modes, for a discrete series Pt, P2, ... ,Pn , ••. of parameter P, called eigenvalues or buckling
loads. Let us now consider the displacement field

v=vr+eV, w=wr+eW, t/J=t/Jr+ e'¥ (16)

where (vr , Wr, t/Jr) is the buckling mode number r, e a small number, and (V, W, '¥) an
admissible displacement field, satisfying the end geometrical boundary conditions on
v, w, t/J.

Reasoning as in [2], pp. 144-147, we obtain the variational equation associated with
present buckling problem:

tI {Ely w~W" + Elzv~V" + GJt/J;'¥' + Ert/J';'¥"} dx
o

t

- PrI {v;V' + w;W' + i;t/J;'¥' + y.(w;'¥' + w't/J;)
o

- z.(v;'¥' + v't/J;)} dx = 0 (r = 1, 2, ... , (0), (17)

which is valid for all buckling modes and all admissible fields (V, w, '¥)t.

t Calling symbolically Ur the rth buckling mode (v" w" 0/,) and ~ the admissible displacement field
(V, W, '1'), we can write (17) in the form

Vl1 (u" ~) - A, Tl1 (u" 0 = 0,
where Vl1 (a, b) and T l1 (a, b) are the bilinear functionals associated to the quadratic and homogeneous
functionals Vand T.

IJSS VallO Na7 - F
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Applying this variational equation with V = Vs, W = Ws' 'l' = I/Js, then writing it again
for index s and applying it with V = Vr , W = Wr , 'l' = I/Jr, then subtracting both equations
obtained and noting that Ps =1= Pr , we obtain the two orthogonality conditions connecting
the buckling modes

1

Tll(u" us) == J [V;V~ + W;W~ + i;(I/J;I/J~) - Ys(w;l/J~ + w~I/J;)
o

+ z,Jv; I/J~ + v~ I/J;)] dx = 0 (s i= r)
1

Ull(u" us) == J[Ely w;w~ + Elzv;v; + Erl/J;l/J~ + GJI/J;I/J~] dx = 0 (s i= r).
o

It is convenient to normalize the buckling modes so that (see, 2.12)

1
T(ur) = - - U(ur) = 1 for all r.

k r

In present case, this normalizing condition becomes:

(18)

(19)

t

T(v" W" I/Jr) == f [V;2 + W;2 + 2ys w; I/J; - 2zsv;l/J; + i; 1/J;2] dx = 1 for all r (20)
o

whence Rayleigh quotient (2.13) gives

U(v" W" I/Jr) = P . (21)

Ifvex), w(x), I/J(x) are given deflexion and rotation functions of the bar, all of them satisfying
the given geometrical end boundary conditions, we may expand these functions as series in
terms of the buckling functions vn(x), wn(x), I/Jn(x) in the form:

00 00 00

vex) = L anvn(x); w(x) = L bn wn(x); I/J(x) = Len I/JnCx).
n~1 n=1 n~t

(22)

In what follows, we shall restrict ourselves to the consideration of deflexions for which
an = bn = Cn • In this case,

00 00 00

vex) = Lan vix); w(x) = Lan wn(x); I/J(x) = Lan I/Jn(X)'
n~l n~t n=1

(23)

(24)

The coefficients an are given by the formula
1

f [,, " '2,/,',/,' (',/", '/") ( './" ',I,')] dan = VVn+WWn+lp'f''f'n-YsW'f'+nWn'f' +ZsV'f'n+Vn'f' X.
o

Indeed, if we replace in the right hand member of (24) v, w, and I/J by their expressions (23),
then put the summation sign L:~ 1 before the integral sign, we see that, by virtue of (18),
all integrals Tll(u" un) = 0, except Tl1(un, un) == T(un) which is equal to I by (20).

2. Variational formulation of the behavior of an imperfect bar. In paragraph I of this
Appendix, we have considered a perfect bar in indifferent equilibrium. Let us now consider
an imperfect bar possessing small initial deviations vo(x), wo(x), I/Jo(x) from the perfect
shape and subjected to a compression force P < Pcr • This bar is in stable equilibrium and,
therefore, its total potential energy

TI=U+V

is minimum for the correct configuration.

(25)
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(26)

The expressions of the strain energy U and the potential energy of the external force P, V,
of the imperfect bar may be easily deduced from the corresponding expressions (10) and
(11) for the perfectly straight bar. Indeed, if vex), w(x) and l/J(x) represent now the additional
displacements due to the imposition of the thrust P, the expression (10) of U remains valid.
On the other hand, in order to evaluate the potential energy of P, we proceed like in para
graph 3 and give first to the imperfect bar negative displacements - Vo, - W o, -l/Jo, in
order to bring it back to its straight shape, and then give to this" model" the total dis
placements Vo + v, wo + w, l/Jo + l/J; in this way, we find for the imperfect structure

PI 1

V = - - {(v' + v~)Z + (w' + w~)Z + 2ys[(w' + w~)(l/J' + l/J~)]
2 0

+ 2zs[(v' + v~)(l/J' + l/J~)] + i;(l/J' + l/J~)z

,z ,2 2 ' .f,' 2 '.f,' ·2 .f,'Z} d-vo -wo - Yswo'l'o+ ZsVO'l'O-lp'l'O x.

Suppose now that the initial deflexions of the bar are expanded in the series of the buckling
modes given by (23):

CD

vo(x) = L a~ vn(x);
n~l

CD

wo(x) = L a~ wn(x);
n~l

CD

l/Jo(x) = L a~ l/JnCx).
n~l

(27)

Let the additional displacements which the bar takes upon application of compression force
P be expressed by similar series:

CD

vex) = Lan vn(x);
n~l

CD

w(x) = Lan wn(x);
n=1

CD

l/J(x) = Lan l/Jn(X)'
n~l

(28)

Introducing expansions (27) and (28) in the expressions (10), (26) of U and V and taking
account of the orthogonality relations (18) as well as the normality conditions (20) (21),
we find:

00

U='IPna;
n=1

CD

V = - P L [(a~ + an)Z - an
n=1

(29)

(30)

These expressions of U and V are identical to the expressions (3.4) and (3.5) of Section 3.
This shows that the results of that paragraph are still applicable when the displacement field
(v, w, l/J) has more than one component and therefore vectorial character, at the sole con
dition to designate by Uo and u, the common amplitude of the three components of the
initial deviations from straightness (vo, Wo , l/Jo) and of the additional deformations under
load (v, w, l/J), respectively.
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PeJJOMe - B rrpe)l(HeH pa60Te aBTOp i-10Ka3bIBaJI, 'ITO rrOBei-1eHHe HecOBepllleHHbIX :maCTH'IHbIX
CTpyKTyp rrOi-1BeprHyTblx KpHTH'IeCKOH CHJIe, BbI3bIBalOI.QeH rrOTeplO yCTOH'IHBOCTH, MOllCHO
rrpei-1CKaJaTb Ha OCHOBaHHH c06CTBeHHbIX 3Ha'leHHH H c06CTBeHHbIX KOJIe6aHHH. nOCJIe
KpaTKoro rrepe'lHH 3THX xapaKTepHCTHK, Bo-rrepBbIX rrOKa3aHO - B rrpHJIOllCeHHH - 'ITO OHH
rrpOCTHpalOTcH Ha TaKHe CJIy'laH rrpOCTpaHcTBeHHoro H3rH6a, KaK HCKpHBJIeHHe H CKpy'lHBaHHe.
BO-BTOPbIX, 'ITO rrpHHl.\Hrr COOTBeTCTBHH i-1eHCTBHTeJIbHbIH i-1JIH rrOBei-1eHHH rrepBoro rropMKa
JIHHeHHo-yrrpYTOBH3KHX CTpyKTyp MOllCHO lllHpOKO 0606I.QHTb - HCrrOJIb30BaHHeM rrpe06pa30
BaHHH JIAIIJIACA - K rrp06JIeMaM Kop06JIeHHH KaKHX 6bI TO He 6bIJIO KOHCTHTy3HTOB
ypaBHeHHH MaTepHaJIOB.

II HaKOHel.\, i-1eTaJIbHO paccMaTpHBaJIH HecKOJIbKO rrpHMepoB 3HJIepOBOro H3rH6a HJIH
H3rn6HO-KpYTHJIbHOrO Kop06JIeHHH 6pycKa H rrJIaCTHHbI.


